Collecting Duct Nitric Oxide Synthase 1ß Activation Maintains Sodium Homeostasis During High Sodium Intake Through Suppression of Aldosterone and Renal Angiotensin II Pathways

نویسندگان

  • Kelly A. Hyndman
  • Elena V. Mironova
  • Jorge F. Giani
  • Courtney Dugas
  • Jessika Collins
  • Alicia A. McDonough
  • James D. Stockand
  • Jennifer S. Pollock
چکیده

BACKGROUND During high sodium intake, the renin-angiotensin-aldosterone system is downregulated and nitric oxide signaling is upregulated in order to remain in sodium balance. Recently, we showed that collecting duct nitric oxide synthase 1β is critical for fluid-electrolyte balance and subsequently blood pressure regulation during high sodium feeding. The current study tested the hypothesis that high sodium activation of the collecting duct nitric oxide synthase 1β pathway is critical for maintaining sodium homeostasis and for the downregulation of the renin-angiotensin-aldosterone system-epithelial sodium channel axis. METHODS AND RESULTS Male control and collecting duct nitric oxide synthase 1β knockout (CDNOS1KO) mice were placed on low, normal, and high sodium diets for 1 week. In response to the high sodium diet, plasma sodium was significantly increased in control mice and to a significantly greater level in CDNOS1KO mice. CDNOS1KO mice did not suppress plasma aldosterone in response to the high sodium diet, which may be partially explained by increased adrenal AT1R expression. Plasma renin concentration was appropriately suppressed in both genotypes. Furthermore, CDNOS1KO mice had significantly higher intrarenal angiotensin II with high sodium diet, although intrarenal angiotensinogen levels and angiotensin-converting enzyme activity were similar between knockout mice and controls. In agreement with inappropriate renin-angiotensin-aldosterone system activation in the CDNOS1KO mice on a high sodium diet, epithelial sodium channel activity and sodium transporter abundance were significantly higher compared with controls. CONCLUSIONS These data demonstrate that high sodium activation of collecting duct nitric oxide synthase 1β signaling induces suppression of systemic and intrarenal renin-angiotensin-aldosterone system, thereby modulating epithelial sodium channel and other sodium transporter abundance and activity to maintain sodium homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats.

The angiotensin AT2 receptor modulates renal production of cyclic guanosine 3',5'-monophosphate (cGMP; J. Clin. Invest. 1996. 97:1978-1982). In the present study, we hypothesized that angiotensin II (Ang II) acts at the AT2 receptor to stimulate renal production of nitric oxide leading to the previously observed increase in cGMP. Using a microdialysis technique, we monitored changes in renal in...

متن کامل

Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure.

Nitric oxide is a pronatriuretic and prodiuretic factor. The highest renal NO synthase (NOS) activity is found in the inner medullary collecting duct. The collecting duct (CD) is the site of daily fine-tune regulation of sodium balance, and led us to hypothesize that a CD-specific deletion of NOS1 would result in an impaired ability to excrete a sodium load leading to a salt-sensitive blood pre...

متن کامل

Update on angiotensin II: new endocrine connections between the brain, adrenal glands and the cardiovascular system

In the brain, angiotensinergic pathways play a major role in chronic regulation of cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these stimuli also activate a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium ...

متن کامل

Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule.

Sodium reabsorption and potassium secretion in the distal convoluted tubule and in the connecting tubule can maintain the homeostasis of the body, especially when dietary sodium intake is high and potassium intake is low. Under these conditions, a large proportion of the aldosterone-regulated sodium and potassium transport would occur in these nephron segments before the tubular fluid reaches t...

متن کامل

Aldosterone: villain or protector?

During the past decade, there has been heightened interest in aldosterone as a cardiovascular risk factor, fueled by studies documenting its effects on tissues other than epithelial cells. Of particular interest is the role of aldosterone in exacerbating vascular injury. It is likely that the mechanisms mediating the vascular effects of aldosterone differ from its effects on epithelial cells, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017